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What is the Chance that the Equity Premium Varies over Time?

Evidence from Predictive Regressions

Abstract

We examine the evidence on stock return predictability in a Bayesian setting that includes

uncertainty about both the existence and strength of predictability. We consider an investor

who believes that excess stock returns exhibit predictability with prior probability q < 1. In

addition, the investor downweights observed predictability by placing a prior distribution on

the R2 of the predictability regression. When we apply our analysis to the dividend-price

ratio, we find that even investors who are quite skeptical about the existence and strength

of predictability sharply modify their views in favor of predictability when confronted by

the evidence. We depart from previous model-selection work by treating the regressor as

stochastic rather than known; we find that this has a large impact on inference about time-

varying expected returns.
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1 Introduction

This paper investigates the evidence in favor of stock return predictability from a model-

selection perspective. Much recent empirical work has focused on the predictive regression

rt+1 = α + βxt + ut+1, (1)

where rt+1 denotes the return on a broad stock index in excess of the riskfree rate, xt denotes

a predictor variable, and ut+1 is a noise term. Taking expectations implies that α + βxt is

the conditional equity premium. If β is not equal to zero, then the equity premium varies

over time.

One approach to investigating whether stock returns are predictable involves running an

ordinary least squares regression (OLS) on (1) and asking whether the predictive coefficient

β is significantly different from zero. As emphasized in a simulation study by Kandel and

Stambaugh (1996), however, this approach has the disadvantage that classical significance

may not be indicative of whether the level of predictability is of economic significance.

If β is found to be insignificant, or only marginally significant, one cannot conclude that

predictability “does not exist” as far as economic agents are concerned.

In this study we adopt a Bayesian approach to inference on (1) that takes model uncer-

tainty as well as parameter uncertainty into account. An investor evaluates the evidence in

favor of equation (1) as opposed to a null hypothesis

rt+1 = α + ut+1. (2)

The investor assigns a prior probability q to a state of the world where (1) describes returns

(i.e. the equity premium is time-varying) and thus a prior probability 1 − q to the state of

the world where (2) describes returns (i.e. the equity premium is constant). The investor’s

beliefs about returns after viewing the data involves assigning a posterior probability to (1),

as well as a posterior distribution to the parameters of interest.

Our paper builds on several strands of the recent portfolio allocation literature. Once

such strand studies properties of Bayesian estimation of predictive regressions (e.g. Bar-
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beris (2000), Johannes, Polson, and Stroud (2002), Brandt, Goyal, Santa-Clara, and Stroud

(2005), Pastor and Stambaugh (2008), Skoulakis (2007), Stambaugh (1999), Wachter and

Warusawitharana (2009)), but assumes that the predictive model is known. A second strand

focuses on model uncertainty, but assumes that the parameters within the model are known

(e.g. Chen, Ju, and Miao (2009), Maenhout (2006), Hansen (2007)). A third strand allows

for both model and parameter uncertainty, but assumes returns are independent and identi-

cally distributed (e.g. Chen and Epstein (2002), Garlappi, Uppal, and Wang (2007)).1 Our

paper builds on this work by assuming that the investor faces both parameter and model

uncertainty, and considers the possibility that returns are predictable.

Our paper also builds on the literature on return predictability and model selection

(Pesaran and Timmermann (1995), Avramov (2002), Cremers (2002)); these papers make

the assumption that the future time path of the regressor is known, an assumption that is

frequently satisfied in a standard ordinary least squares regression, but rarely satisfied in a

predictive regression. By making use of methods developed in Wachter and Warusawitharana

(2009), we are able to formulate and solve the investor’s problem when the regressor is

stochastic. Our paper therefore incorporates the insights of the frequentist literature on

predictive return regressions (e.g. Cavanagh, Elliott, and Stock (1995), Nelson and Kim

(1993), Stambaugh (1999), Lewellen (2004), Torous, Valkanov, and Yan (2004), Campbell

and Yogo (2006)) into a Bayesian portfolio selection setting.

When we apply our methods to predicting returns by the dividend-price ratio, we find

that an investor who believes that there is a 20% probability of predictability prior to seeing

the data updates to a 65% posterior probability after viewing quarterly postwar data. An

advantage of modeling the stochastic process for the regressor is that we are able to compute

certainty equivalent returns from exploiting predictability that do not depend on a particular

value for the regessor. We find certainty equivalent returns of 1.16% per year when the

1Some of this work considers model uncertainty together with ambiguity aversion. In order to better

focus on the affect of parameter and model uncertainty on the investor’s decision-making, we do not consider

ambiguity aversion here.
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dividend-price ratio is used as a predictor variable for an investor whose prior probability in

favor of predictability is just 20%. For an investor who believes that there is a 50/50 chance

of return predictability, certainty equivalent returns are 1.83%.

We also empirically evaluate the effect of using a full Bayes, exact likelihood approach

as opposed to the conditional likelihood, and as opposed to empirical Bayes. A common

approach to Bayesian inference in a time series setting is to treat the first observation of

the predictor variable as a known parameter rather than a draw from the data generating

process. However, we find that conditioning on the first observation results in Bayes factors

(the ratio of the likelihood of model (1) to (2)) that are substantially smaller as compared

to when the initial observation is treated as a draw from the data generating process. The

posterior for the unconditional risk premium is highly unstable when we condition on the

first observation. However, when this is treated as a draw from the data generating process,

the expected return is estimated in a reliable way. In addition, using an empirical Bayes

approach, which involves using data on the regressor to determine the prior, implies Bayes

factors that are larger than those implied by the fully Bayesian approach. Conditioning

on the first observation and using empirical Bayes are often regarded as approximation

techniques to the full Bayes exact likelihood approach that we emphasize (e.g. Box and Tiao

(1973), Chipman, George, and McCulloch (2001)). Our results suggest that, at least for

some purposes, this approximation may be less accurate than previously believed.

2 Model

2.1 Data generating processes

Let rt+1 denote continuously compounded excess returns on a stock index from time t to

t+1 and xt the value of a (scalar) predictor variable. We assume that this predictor variable

follows the process

xt+1 = θ + ρxt + vt+1. (3)
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Stock returns can be predictable, in which case they follow the process (1) or unpredictable,

in which case they follow the process (2). In either case, errors are serially uncorrelated,

homoskedastic, and jointly normal:





ut+1

vt+1



 | rt, . . . , r1, xt, . . . , x0 ∼ N (0, Σ) , (4)

and

Σ =





σ2
u σuv

σuv σ2
v



 . (5)

As we show below, the correlation between innovations to returns and innovations to the state

variable implies that (3) affects inference about returns, even when there is no predictability.

When the process (3) is stationary, i.e. ρ is between -1 and 1, the state variable has an

unconditional mean of

µx =
θ

1 − ρ
(6)

and a variance of

σ2
x =

σ2
v

1 − ρ2
. (7)

These follow from taking unconditional means and variances on either side of (3). Note

that these are population values conditional on knowing the parameters. Given these, the

population R2 is defined as

Population R2 =
β2σ2

x

β2σ2
x + σ2

u

.

2.2 Prior Beliefs

An investor’s prior views on predictability can be elicited by the answer to two straightfor-

ward questions.2 Consider data generating processes of the form (1) and (2). Given these

processes, the investor should answer:

2The basic structure of these prior beliefs is analogous to that used by Baks, Metrick, and Wachter (2001)

in the setting of mutual fund performance evaluation.
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• [Question 1] What is the probability that predictability exists, i.e. that equation (1)

describes returns for some β 6= 0? (Call this answer q.)

• [Question 2] Given that predictability exists, what is the probability that the R2

exceeds 1%? (Call this answer P.01.)

The answer to Question 2 will be conditional on the frequency; for most of our results,

quantities will be measured at an annual frequency. Note that Question 2 is not asking

about the probability of achieving an R2 in a given sample, which depends on sampling

variability. It is asking about the R2 that would result if the time period goes to infinity.

The use of 1% is arbitrary; any other value that is greater than 0 could be substituted.

We now demonstrate how to specify priors given the answers to these questions. An

appeal of this approach is that it is not necessary to specify aspects of the distribution of

the predictor variable and of returns other than those given above. The prior beliefs are

invariant to changes to these aspects of the distribution.

2.2.1 Full Bayes priors

Let H0 denote the state of the world in which excess returns are unpredictable (the “null”)

and H1 denote the state of the world in which there is some amount of excess return pre-

dictability. Then q is the prior probability of H1, i.e. q = p(H1). In what follows, we

construct priors for the parameters conditional on H0 and on H1. It is convenient to group

the regression parameters in equations (1), (2) and (3) into vectors

b0 = [α, θ, ρ]⊤

and

b1 = [α, β, θ, ρ]⊤.

We then specify the prior p(b0, Σ|H0), which is the prior on b0 and Σ conditional on no

predictability and the prior p(b1, Σ|H1), which is the prior on b1 and Σ conditional on the

existence of predictability.3

3Formally we could write down p(b1, Σ|H0) by assuming p(β|b0, Σ, H0) is a point mass at zero.
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Note that p(b1, Σ|H1) can also be written as p(β, b0, Σ|H1). We set the prior on b0 and Σ

so that

p(b0, Σ|H0) = p(b0, Σ|H1) = p(b0, Σ).

We assume the investor has uninformative beliefs on these parameters. We follow the ap-

proach of Stambaugh (1999) and Zellner (1996), and derive a limiting Jeffreys prior as

explained in Appendix A. As Appendix A shows, this limiting prior takes the form

p(b0, Σ) ∝ σxσu|Σ|−
5

2 , (8)

for ρ ∈ (−1, 1), and zero otherwise.

The parameter that distinguishes H0 from H1 is β. One approach would be to write down

a prior distribution for β unconditional on the remaining parameters. However, it is difficult

to think about priors on β in isolation from beliefs about other parameters. For example, a

high variance of xt might lower one’s prior on β, while a large residual variance of rt might

raise it. Rather than placing a prior on β directly, we follow Wachter and Warusawitharana

(2009) and place a prior on the population R2. To implement this prior on the R2, we place

a prior on “normalized” β, that is β adjusted for the variance of x and the variance of u.

Let

η = σ−1
u σxβ.

denote normalized β. We assume that prior beliefs on η are given by

η|H1 ∼ N(0, σ2
η) (9)

The population R2 is closely related to η:

Population R2 =
β2σ2

x

β2σ2
x + σ2

u

=
η2

η2 + 1
. (10)

Equation (10) provides a mapping between a prior distribution on η and a prior distribution

on the population R2. Given an η draw, an R2 draw can be computed using (10).

A prior on η implies a hierarchical prior on β. Because

p(β, b0, Σ|H1) = p(β|b0, Σ, H1)p(b0, Σ|H1),
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it suffices to choose a prior for β conditional on the other parameters. The prior for η, (9),

implies

β|α, θ, ρ, Σ ∼ N(0, σ2
β), (11)

where

σβ = σησ
−1
x σu.

Because σx is a function of ρ and σv, the prior on β is also implicitly a function of these

parameters. The parameter ση indexes the degree to which the prior is informative. As

ση → ∞, the prior over β becomes uninformative; all values of β are viewed as equally

likely. As ση → 0, the prior converges to p(b0, Σ) multiplied by a point mass at 0, implying

a dogmatic view in no predictability. Combining (11) with (8) implies the joint prior under

H1:

p(b1, Σ|H1) = p(β|b0, Σ, H1)p(b0|H1)

∝ 1
√

2πσ2
η

σ2
x|Σ|−

5

2 exp

{

−1

2
β2
(

σ2
ησ

−2
x σ2

u

)−1
}

. (12)

Jeffreys invariance theory provides an independent justification for modeling priors on β

as (11). Stambaugh (1999) shows that the limiting Jeffreys prior for b1 and Σ equals

p(b1, Σ|H1) ∝ σ2
x |Σ|−

5

2 . (13)

This prior corresponds to the limit of (12) as ση approaches infinity. Modeling the prior for

β as depending on σx not only has a convenient interpretation in terms of the distribution

of the R2, but also implies that an infinite prior variance represents ignorance as defined

by Jeffreys (1961). Note that a prior on β that is independent of σx would not have this

property.

Figure 1 shows the resulting distribution for the population R2 for various values of ση.

Panel A shows the distribution conditional on H1 while Panel B shows the unconditional

distribution. More precisely, for any value k, Panel A shows the prior probability that the

R2 exceeds k, conditional on the existence of predictability. For large values of ση, e.g. 100,

the prior probability that the R2 exceeds k across the relevant range of values for the R2 is
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close to one. The lower the value of ση, the less variability in β around its mean of zero,

and the lower the probability that the R2 exceeds k for any value of k. Panel B shows the

unconditional probability that the R2 exceeds k for any value of k, assuming that the prior

probability of predictability, q, is equal to 0.5. By the definition of conditional probability:

p(R2 > k) = p(R2 > k|H1)q.

Therefore Panel B takes the values in Panel A and scales them down by 0.5. To distinguish

(8) and (12) from an alternative set of priors that we describe in the following section, we

refer to these as full Bayes priors.

2.2.2 Empirical Bayes priors

A second approach to formulating priors involves conditioning on moments of the data. Let

T denote the length of the sample and σ̂x the sample variance of x:

σ̂x =
1

T

T
∑

t=1

(

xt −
1

T

T
∑

s=1

xs

)2

.

One specification for the prior, introduced by Fernandez, Ley, and Steel (2001), is as follows:

p(β | σ2
u, H1) = N(0, κσ2

uσ̂
−1
x ), (14)

where κ is a constant that determines the informativeness of the prior, and

p(σu) ∝ σ−1
u . (15)

The specification is completed by setting

p(α) ∝ 1. (16)

These assumptions on the prior are combined with the likelihood

p(D |α, β, σu, H1) =
(

2πσ2
u

)−
T

2 exp

{

−1

2

T−1
∑

t=0

(rt+1 − α − βxt)
2σ−2

u

}

(17)
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and

p(D |α, β, σu, H0) =
(

2πσ2
u

)−
T

2 exp

{

−1

2

T−1
∑

t=0

(rt+1 − α)2σ−2
u

}

. (18)

Very similar specifications are employed by Chipman, George, and McCulloch (2001), Cre-

mers (2002), Wright (2003) and Stock and Watson (2005). Note that these equations display

the marginal likelihood over the return equations (1) and (2) rather than the full likelihood

that includes the data generating process for xt. An appeal of this formulation for the prior is

that it leads to analytical expressions for the posterior distribution and for the Bayes factor

(in fact, it is closely related to the “g-prior” of Zellner (1996)).

The above assumptions are most reasonable in the case where x1, . . . , xT are observed at

time 0. While this holds in many applications of OLS regression, it holds rarely, if ever, in the

case of predictive regressions in financial time series. Moreover, were x1, . . . , xT observed,

the contemporaneous correlation between xt and rt would invalidate the likelihoods (17)

and (18) because the value of xt would convey information about rt not reflected in these

likelihoods. One way to interpret the above in the setting where x is stochastic is to assume

that, while the data on xt themselves are unobserved, certain functions of the data, namely

sample moments of xt such as σ̂x, are observed. Allowing data to influence the prior is

generally referred to as the “empirical Bayes” method.4 For this reason, the formulation of

priors that use moments from the sample could be thought of as an example of empirical

Bayes, at least if one accepts a broad definition of the term.5

Regardless of its theoretical attractiveness, it is of interest to ask whether the use of

empirical Bayes in this setting make a difference in practice. There are a number of differences

4However, in traditional applications of empirical Bayes, the term has generally implied either the use

of data that is known prior to the decision problem at hand or data from the population from which the

parameter of interest can be drawn (Robbins (1964), Berger (1985)). For example, if one is forming a prior

on a expected return for a particular security, one might use the average expected return of firms in that

industry (Pastor and Stambaugh (1999)).
5Avramov (2002) uses marginal likelihoods analogous to (17) and (18), but formulates the prior by

assuming that the agent observes a prior sample with moments similar to the existing sample, but without

predictability. This is also an example of the empirical Bayes approach.
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between the specification described in (14)–(18) and ours. Most importantly, by assuming

the investor knows the sample moments of x, the above approach avoids the need to make

explicit assumptions on the prior for the parameters of the x process and for the likelihood

of the x process. However, as we show, these assumptions, whether hidden or explicit, have

important consequences for the posterior distribution.

Leaving these issues aside for the moment, our immediate goal is to write down a version

of the above specification that is close enough to our model so that differences in results

stemming from the link (or lack thereof) between the distribution of σx and that of β can

be interpreted. To this end, we consider the specification

p(β|b0, Σ, H1) ∼ N(0, σ̂2
β),

where

σ̂β = σησ̂
−1
x σ̂u.

We compute σ̂u as the standard deviation of the residual from OLS regression of the predictive

regression.6 Note that these priors do not imply a proper prior distribution for the R2.

Therefore they cannot be used to answer Question 2 posed above. In order to compare the

empirical Bayes and the full Bayes priors, we use the same values of ση to form σ̂β as we use

to form σβ.

We assume a standard uninformative prior for the remaining parameters (see Zellner

(1996) and Gelman, Carlin, Stern, and Rubin (2004)): with a normal distribution for β,

where the prior covariance reflects the agent’s beliefs about predictability. We also ensure

that xt is stationary. That is:

p(b0, Σ|H1) = p(b0, Σ|H0) ∝ |Σ|− 3

2 , (19)

for ρ ∈ (−1, 1), and zero otherwise. It follows that

p(b1, Σ|H1) ∝
1

√

2πσ̂2
β

|Σ|− 3

2 exp

{

−1

2
β2σ̂−2

β

}

(20)

6For simplicity, we do not incorporate a link between σ̂u and β as in (14). Because σu is estimated very

precisely (unlike σx), this is unlikely to make a large difference in the results.
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These priors may be thought of as the simplest set of priors which contain information about

the distribution of β, the coefficient on return predictability. In what follows, we refer to

these as empirical Bayes priors. We combine these priors with the same likelihood as used

for the full Bayes prior, described below.

2.3 Likelihood

2.3.1 Likelihood under H1

Under H1, returns and the state variable follow the joint process given in (1) and (3). It is

convenient to group observations on returns and contemporaneous observations on the state

variable into a matrix Y and lagged observations on the state variable and the constant into

a matrix X. Let

Y =











r1 x1

...
...

rT xT











X =











1 x0

...
...

1 xT−1











,

and let

z = vec(Y )

Z1 = I2 ⊗ X.

In the above, the vec operator stacks the elements of the matrix columnwise. It follows that

the likelihood conditional on H1 and on the first observation x0 takes the form of

p(D|b1, Σ, x0, H1) = |2πΣ|−
T

2 exp

{

−1

2
(z − Z1b1)

⊤
(

Σ−1 ⊗ IT

)

(z − Z1b1)

}

(21)

(see Zellner (1996)).

The likelihood function (21) conditions on the first observation of the predictor variable,

x0. Stambaugh (1999) argues for treating x0 and x1, . . . , xT symmetrically: as random

draws from the data generating process. If the process for xt is stationary and has run for a

substantial period of time, then results in Hamilton (1994, p. 265) imply that x0 is a draw

from a multivariate normal distribution with mean µx and standard deviation σx. Combining
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the likelihood of the first observation with the likelihood of the remaining T observations

produces

p(D|b1, Σ, H1) = |2πσ2
x|−

1

2 |2πΣ|−T

2 exp

{

−1

2
(x0 − µx)

2 σ−2
x

− 1

2
(z − Z1b1)

⊤
(

Σ−1 ⊗ IT

)

(z − Z1b1)

}

. (22)

Following Box and Tiao (1973), we refer to (21) as the conditional likelihood and (22) as the

exact likelihood.

2.3.2 Likelihood under H0

Under H0, returns and the state variable follow the processes given in (2) and (3). Let

Z0 =





ιT 0T×2

0T×1 X



 ,

where ιT is the T × 1 vector of ones. Then the conditional likelihood can be written as

p(D|b0, Σ, x0, H0) = |2πΣ|−
T

2 exp

{

−1

2
(z − Z0b0)

⊤
(

Σ−1 ⊗ IT

)

(z − Z0b0)

}

. (23)

Using similar reasoning as in the H1 case, the exact likelihood is given by

p(D|b0, Σ, H0) = |2πσ2
x|−

1

2 |2πΣ|−T

2 exp

{

−1

2
(x0 − µx)

2 σ−2
x

− 1

2
(z − Z0b0)

⊤
(

Σ−1 ⊗ IT

)

(z − Z0b0)

}

. (24)

As above, we refer to (23) as the conditional likelihood and (24) as the exact likelihood.

2.4 Posterior distribution

The investor updates his prior beliefs to form the posterior distribution upon seeing the

data. As we discuss below, this posterior requires the computation of two quantities: the

posterior of the parameters conditional on the absence or existence of return predictability,

and the posterior probability that returns are predictable. Given these two quantities, we

can simulate from the posterior distribution.
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To compute the posteriors conditional on the absence or existence of return predictability,

we apply Bayes’ rule conditioning on H0 and conditioning on H1. It follows from Bayes’ rule

that

p(b0, Σ|H0, D) ∝ p(D|b0, Σ, H0)p(b0, Σ|H0) (25)

is the posterior conditional on H0 and that

p(b1, Σ|H1, D) ∝ p(D|b1, Σ, H1)p(b1, Σ|H1) (26)

is the posterior conditional on H1. Because σx is a nonlinear function of the underlying

parameters, the posterior distributions conditional on H0 and H1 are nonstandard and must

by computed numerically. We can sample from these distributions quickly and accurately

using the Metropolis-Hastings algorithm (see Chib and Greenberg (1995), Johannes and

Polson (2006)). See Appendix B for details.

Let q̄ denote the posterior probability that excess returns are predictable. By definition,

q̄ = p(H1|D).

It follows from Bayes’ rule, that

q̄ =
p(D|H1)q

p(D|H1)q + p(D|H0)(1 − q)

=
B10q

B10q + (1 − q)
, (27)

where

B10 =
p(D|H1)

p(D|H0)
(28)

is the Bayes factor for the alternative hypothesis of predictability against the null of no

predictability. The Bayes factor is a likelihood ratio in that it is the likelihood of return

predictability divided by the likelihood of no predictability. However, it differs from the

standard likelihood ratio in that the likelihoods p(D|Hi) are not conditional on the values

of the parameters. In fact, these likelihoods can be formally written as

p(D|H0) =

∫

p(D|b0, Σ, H0)p(b0, Σ|H0) db0 dΣ (29)
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and

p(D|H1) =

∫

p(D|b1, Σ, H1)p(b1, Σ|H1) db1 dΣ. (30)

To form p(D|H0) and p(D|H0), the likelihood conditional on parameters (the likelihood

function generally used in classical statistics) is integrated over the prior distribution of

the parameters. Under our distributions, these integrals cannot be computed analytically.

However, the Bayes factor (28) can be computed directly using the generalized Savage-Dickey

ratio (Dickey (1971), Verdinelli and Wasserman (1995)). Details can be found in Appendix C.

Putting these two pieces together, we draw from the posterior parameter distribution

by drawing from p(b1, Σ|D, H1) with probability q̄ and from p(b0, Σ|D, H0) with probability

1 − q̄.

3 Results

We now apply the above framework to understanding the predictive power of the dividend-

price ratio and payout yield for the excess return on a broad equity index.

3.1 Data

We use data from the Center for Research on Security Prices (CRSP). We compute excess

stock returns by subtracting the continuously compounded 3-month treasury bill return from

the return on the value-weighted CRSP index at annual and quarterly frequencies. Following

a large portfolio selection literature (see, e.g., Brennan, Schwartz, and Lagnado (1997),

Campbell and Viceira (1999)), we focus on the dividend-price ratio as the predictive factor.

The dividend-price ratio is computed by dividing the dividend payout over the previous 12

months with the current price of the stock index. The use of 12 months of data accounts for

seasonalities in dividend payments. We use the logarithm of the dividend-price ratio as the

predictive factor. We also use the repurchases-adjusted payout yield of Boudoukh, Michaely,

Richardson, and Roberts (2007) as a predictive factor. Data are annual data from 1927 to
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the beginning of 2005; we also report results with the dividend-price ratio at a quarterly

frequency from 1952 onwards.

3.2 Bayes factors and posterior means

Table 1 reports Bayes factors and posterior means when the payout yield is used as a predictor

variable. Table 2 and 3 report analogous results for the dividend-price ratio in annual data

and in quarterly postwar data respectively. Each table reports results for full Bayes priors

combined with the exact likelihood, for full Bayes priors combined with the conditional

likelihood and for empirical Bayes priors combined with the exact likelihood. For each prior

and likelihood combination, four values of ση are considered: 0.05, 0.09, 0.15 and 100. For

the full Bayes priors, these translate into values of P.01 (the prior probability that the R2

exceeds 0.01) equal to 0.05, 0.25, 0.50 and 0.99 respectively. For the empirical Bayes priors,

the prior distribution over the R2 is not well defined. We construct these priors using the

same values of ση as the full Bayes counterparts. Because the results are qualitatively similar

across the three data sets, we focus on results for the payout yield in Table 1.

Table 1 shows that the Bayes factor is hump-shaped in P.01 for each prior-likelihood

combination. For small values of P.01, the Bayes factor is close to one. For large values, the

Bayes factor is close to zero. Both results can be understood using the formula for the Bayes

factor in (28) and for the likelihoods p(D |H1) and p(D |H0) in (29) and (30). For low values

of P.01, the investor imposes a very tight prior on the R2. Therefore the hypotheses that

returns are predictable and that returns are unpredictable are nearly the same. It follows

from (29) and (30) that the likelihoods of the data under these two scenarios are nearly the

same and that the Bayes factor is nearly one. This is intuitive: when two hypotheses are

close, a great deal of data are required to distinguish one from the other.

The fact that the Bayes factor approaches zero as P.01 increases is less intuitive. The

reduction in Bayes factors implies that, as the investor allows a greater range of values for

the R2, the posterior probability that returns are predictable approaches zero. This effect
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is known as Bartlett’s paradox, and was first noted by Bartlett (1957) in the context of

distinguishing between uniform distributions. As Kass and Raftery (1995) discuss, Bartlett’s

paradox makes it crucial to formulate an informative prior on the parameters that differ

between H0 and H1. The mathematics leading to Bartlett’s paradox are most easily seen

in a case where Bayes factors can be computed in closed form. However, we can obtain an

understanding of the paradox based on the form of the likelihoods p(D |H1) and P (D |H0).

These likelihoods involve integrating out the parameters using the prior distribution. If the

prior distribution on β is highly uninformative, the prior places a large amount of mass

in extreme regions of the parameter space. In these regions, the likelihood of the data

conditional on the parameters will be quite small. At the same time, the prior places a

relatively small amount of mass in the regions of the parameter space where the likelihood

of the data is large. Therefore P (D |H1) (the integral of the likelihood under H1) is small

relative to P (D |H0) (the integral of the likelihood under H0).

Table 1 also shows that there are substantial differences between the Bayes factors re-

sulting from the exact versus the conditional likelihood and from empirical versus full Bayes.

The Bayes factors resulting from the exact likelihood are larger than those resulting from the

conditional likelihood, thus implying a greater posterior probability of return predictability.

The Bayes factors resulting from full Bayes are smaller than those resulting from empirical

Bayes, implying a lower posterior probability of return predictability.

In what follows, we seek to explain these patterns in the Bayes factors. Let β̄ be the

posterior mean of β conditional on predictability and ρ̄ the posterior mean of ρ conditional

on predictability. As Table 1 shows, differences in Bayes factors between specifications reflect

differences in β̄. That is, for any given value of P.01, β̄ is higher for the exact likelihood than

for the conditional likelihood, and lower for full Bayes than for empirical Bayes. Moreover,

the opposite pattern is evident for ρ̄. The negative correlation between ρ and β is also

noted by Stambaugh (1999)). The source of this negative relation is the negative correlation

between shocks to returns and shocks to the predictor variable. Suppose that a draw of β is

below its value predicted by ordinary least squares (OLS). This implies that the OLS value

18



for β is “too high”, i.e. in the sample shocks to the predictor variable are followed by shocks

to returns of the same sign. Therefore shocks to the predictor variable tend to be followed

by shocks to the predictor variable that are of different signs. Thus the OLS value for ρ is

“too low”. This explains why values of ρ̄ are higher for low values of P.01 (and hence low

values of β̄) than for high values, and higher than the ordinary least squares estimate.

We can use the connection between ρ̄, β̄ and the Bayes factor to account for differences

between the Bayes factors between the prior and likelihood specifications. As Table 1 shows,

using the exact likelihood leads to lower posterior values of ρ. This is because the exact

likelihood leads to more precise estimates of µx. By the argument in the previous paragraph,

this implies greater posterior values for β and higher Bayes factors.

On the other hand, the use of full rather than empirical Bayes implies higher posterior

values of ρ. This occurs because the full Bayes prior, on account of the σ2
x term, puts more

weight on high values of σx and therefore high values of ρ. When β is not far from zero, the

posterior distribution is higher for lower values of σβ , and hence higher values of σx. This

leads to lower posterior means of β and lower Bayes factors.

Tables 1–3 also report the posterior means of excess returns (the equity premium) and of

the predictor variable conditional on predictability. In each case, the OLS row reports the

sample mean of excess returns and the sample mean of the predictor variable.7 Posterior

means conditional on no predictability are very close to their counterparts for P.01 = .05.

Surprisingly, the various choices for the predictor variable and for the prior and likelihood

imply different values for the equity premium. For example, the sample average for excess

returns over the 1927 to 2004 period is 5.85% per annum. In contrast, the full Bayes exact

likelihood approach generates average returns that range from 5.05% to 5.24% per annum

7Posterior means for r and x integrate out over uncertainty in the predictor variables. In the case of

returns, for example, we compute

E[r|D, H1] = E

[

α + β
θ

1 − ρ
|H1

]

,

where the expectation on the right hand side is taken over the posterior distribution for the parameters.
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depending on the informativeness of the prior (the more informative the prior, the higher

the excess return).

The differences in the estimates of the equity premium arise from differences in estimates

of the mean of the predictor variable. The conditional maximum likelihood estimate of the

mean of x (not reported) is -3.54. The posterior mean implied by the exact likelihood is

between -3.16 and -3.17 (depending on the prior). Thus according to the model, shocks to

the predictor variable over the sample period must be negative for -3.54 to be the estimated

value when the conditional likelihood is used. It follows that the shocks to excess returns

must be positive (because of the negative correlation). Therefore the posterior mean is below

the sample mean. This effect also operates in the case of the dividend-price ratio and is in

fact more dramatic. In annual data from 1927 to 2004, the implied means for excess returns

range from 4.02 to 4.71% per annum versus the sample mean of 5.85%.

While the use of empirical Bayes implies values for the posterior mean of r that are

similar to those for full Bayes, the use of the conditional likelihood implies estimates that

are highly variable and can even be negative. This is because of the lack of precision in

estimating µx.

Tables 1–3 demonstrate differences in the posterior distribution depending on whether

one uses full Bayes or empirical Bayes, and whether one uses the exact likelihood or the

conditional likelihood. In what follows, we will examine the full Bayes, exact likelihood case

more closely, and show its implications for inference on return predictability. The following

two sections examine statistical measures: the posterior likelihood of predictability and the

posterior distribution of the R2. The final section examines economic significance of the

predictability evidence through certainty equivalent returns.

3.3 Posterior likelihood of predictability

We now examine the posterior probability that excess returns are predictable. Given a

Bayes factor and a prior belief on the existence of predictability q, the posterior probability
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of predictability q̄ can be computed using equation (27). The greater the investor’s prior

belief about predictability, the greater is his posterior belief. The greater is the Bayes factor,

the greater is the posterior belief. As described in the previous section, the Bayes factor

itself depends on the other aspect of the investor’s prior: the prior probability that the R2

exceeds 1% should predictability exist.

Table 4 presents the posterior probabilities of predictability as a function of the in-

vestor’s prior about the existence of predictability, q, and the prior belief on the strength

of predictability, P.01. We consider the posterior resulting from full Bayes priors and the

exact likelihood. The posterior probability is increasing in q and hump-shaped in P.01, re-

flecting the fact that the Bayes factors are hump-shaped in P.01. The results demonstrate

that investors with moderate beliefs on both the existence and strength of predictability

revise their beliefs on the existence on predictability sharply upward. For example, an in-

vestor with q = 0.5 and P.01 = 0.50 conclude that the posterior likelihood of predictability

equals 0.88 using the payout yield to predict annual returns. This result is robust to a wide

range of choices for P.01. As the table shows, P.01 = 0.25 implies a posterior probability of

0.74. The posterior probability falls off dramatically as P.01 approaches one; for these very

diffuse priors (which imply what might be considered an economically unreasonable amount

of predictability), the Bayes factors are close to zero.

While the evidence is slightly weaker when the dividend-price ratio is used in annual data,

the dividend-price ratio combined with quarterly post-war data implies stronger evidence in

favor of predictability. In particular, q = .50 implies posterior probabilities of predictability

above 0.80 for all but the most diffuse prior.

This section has examined an important aspect of the posterior distribution: the proba-

bility that returns are predictable. In what follows, we examine the full posterior for the R2

of the predictability relation.

21



3.4 Posterior R2 values

We measure the investor’s prior beliefs about the strength of predictability using the metric

P (R2 > 1%|H1) = P.01. It is therefore of interest to examine the posterior beliefs over the

R2. We consider posteriors derived from the full Bayes prior and the exact likelihood.

Figure 2 shows two plots on the prior and posterior distribution of the R2 with priors

P (R2 > 1% |H1) = 0.50 and q = 0.5 using the payout yield to predict annual returns.

Panel A plots P (R2 > k) as a function of k for both the prior and the posterior; this

corresponds to 1 minus the cumulative density function of the R2.8 The plot for the P (R2 >

k) demonstrates a clear rightward shift for the posterior for values of k up to 0.15 (both

the prior and the posterior place similarly low probabilities that the R2 exceeds 0.15). The

strength of the predictability can be seen in that while the prior implies P (R2 > 1%) = 0.25,

the posterior implies P (R2 > 1%) close to 0.85. Thus, after observing the data, an investor

revises his beliefs on the strength of predictability substantially upward. Panel B plots the

probability density function of the R2. The full Bayes prior places the highest density on

low values of the R2. The posterior however places high density in the region around 5%

and has lower density than the prior for R2 values less than 2%. The evidence in favor of

predictability, with a moderate R2, is sufficient to overcome the investor’s initial skepticism.

Figure 3 shows the comparable plots using the dividend-price ratio to predict annual

returns. Results are similar to those discussed for the payout yield. The posterior probability

of P (R2 > k) is again higher that the prior probability for k ranging from 0 to 15%. The

probability that the R2 exceeds 1% goes from 15% to about 75%. The probability density

function also shows lower density than the prior for very low values of the R2 and again

places high density in the region of 5%.

Figure 4 repeats this analysis using the dividend-price ratio to predict quarterly returns.

The results show that the posterior clearly favors the existence of a moderate amount of

predictability (note that we would expect the R2 measured at a quarterly horizon to be below

8This figures shows the unconditional posterior probability that the R2 exceeds k; that is, it does not

condition on the existence of predictability.
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that for an annual horizon). Panel A shows that the probability that the R2 exceeds 1% is

25% for the prior but above 80% for the posterior. More generally, the posterior probability

that the R2 exceeds k is greater for the posterior than for the prior for all k < 3%. Panel B

shows that the posterior density exhibits a clear spike around 2%.

The above analysis evaluates the statistical evidence on predictability. The Bayesian

approach also enables us to study the economic gains from market timing. In particular,

we can evaluate the certainty equivalent loss from failing to time the market under different

priors on the existence and strength of predictability.

3.5 Certainty equivalent returns

We now measure the economic significance of the predictability evidence using certainty

equivalent returns. We assume an investor who maximizes

E

[

W 1−γ
T+1

1 − γ

∣

∣

∣

∣

∣

D

]

for γ = 5, where WT+1 = WT (w exp{rT+1 + rf,T} + (1 − w) exp{rf,T}), and w is the weight

on the risky asset. The expectation is taken with respect to the predictive distribution

p(rT+1 |D) = q̄p(rT+1 |D, H1) + (1 − q̄)p(rT+1 |D, H0),

where

p(rT+1 |D, Hi) =

∫

p(rT+1 | xT , bi, Σ, Hi)p(bi, Σ |D, Hi) dbi dΣ

for i = 0, 1.

A draw rT+1 from the distribution p(rT+1 | xT , b1, Σ) is given by (1) with probability q̄

and (2) with probability 1 − q̄. The posterior distribution of the parameters is described in

Section 2.4.

For any portfolio weight w, we can compute the certainty equivalent return as solving

exp {(1 − γ)CER}
1 − γ

= E

[

(w exp{rT+1 + rf,T} + (1 − w) exp{rf,T})1−γ

1 − γ

∣

∣

∣

∣

D

]

. (31)
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Following Kandel and Stambaugh (1996), we measure utility loss as the difference between

certainty equivalent returns from following the optimal strategy and from following a sub-

optimal strategy. We define the sub-optimal strategy as the strategy that the investor would

follow if he believes that there is no predictability. Note, however, that the expectation in

(31) is computed with respect to the same distribution for both the optimal and sub-optimal

strategy.

Table 5 presents the average certainty equivalent loss: we compute the difference in cer-

tainty equivalent returns as described above, and then average over the posterior distribution

for x. The data indicate economically meaningful economic losses from failing to time the

market. Panel A shows that, for example, an investor with a prior on β such that P.01 = 0.50

and a 50% prior belief in the existence of return predictability would suffer a certainty equiv-

alent loss of 0.84% from failing to time the market using the payout yield.9 Higher values of

q imply greater certainty equivalent losses. Panel B shows somewhat lower certainty equiva-

lent losses for the dividend-price ratio using annual data. However, the certainty equivalent

loss is much greater for distributions computed using quarterly postwar data: 1.83% per

annum for the investor with P.01 = 0.50, and q = 0.50, and higher for higher levels of q.

4 Conclusion

This study has taken a Bayesian model selection approach to the question of whether the

equity premium varies over time. We considered investors who face uncertainty both over

whether predictability exists, and over the strength of predictability if it does exist. We

found substantial evidence in favor of predictability when the dividend-price ratio and payout

yield were used to predict returns. Moreover, we found large certainty equivalent losses from

failing to time the market, even for investors who have strong prior beliefs in a constant

equity premium.

9The low values of the certainty equivalent losses for P.01 = 0.99 are a reflection of Bartlett’s paradox, as

described above.
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Finally, we found that taking a fully Bayesian approach that incorporates the exact

likelihood function leads to substantially different inference as compared with empirical Bayes

or the conditional likelihood function. Empirical Bayes tends to overstate the evidence in

favor of predictability while using the conditional likelihood understates the evidence. These

results point to the importance of taking into account the stochastic nature of the regressor

when studying return predictability from a Bayesian perspective.
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Appendix

A Jeffreys prior under H0

Jeffreys argues that a reasonable property of a “no-information” prior is that inference be

invariant to one-to-one transformations of the parameter space. Given a set of parameters µ,

data D, and a log-likelihood l(µ; D), Jeffreys shows that invariance is equivalent to specifying

a prior as

p(µ) ∝
∣

∣

∣

∣

−E

(

∂2l

∂µ∂µ⊤

)
∣

∣

∣

∣

1/2

. (A.1)

Besides invariance, this formulation of the prior has other advantages such as minimizing

asymptotic bias and generating confidence sets that are similar to their classical counterparts

(see Phillips (1991)).

Our derivation for the limiting Jeffreys prior on b0, Σ follows Stambaugh (1999). Zellner

(1996, pp. 216-220) derives a limiting Jeffreys prior by applying (A.1) to the likelihood (24)

and retaining terms of the highest order in T . Stambaugh shows that Zellner’s approach is

equivalent to applying (A.1) to the conditional likelihood (23), and taking the expectation

in (A.1) assuming that x0 is multivariate normal with mean (6) and variance (7). We adopt

this approach.

We derive the prior density for p(b0, Σ
−1) and then transform this into the density for

p(b0, Σ) using the Jacobian. Let

l0(b0, Σ; D) = log p(D|b0, Σ, H0, x0). (A.2)

denote the natural log of the conditional likelihood. Let ζ = [σ(11) σ(12) σ(22)]⊤, where σ(ij)

denotes element (i, j) of Σ−1. Applying (A.1) implies

p(b0, Σ
−1|H0) ∝

∣

∣

∣

∣

∣

∣

−E





∂2l0
∂b0∂b⊤

0

∂2l0
∂b0∂ζ⊤

∂2l0
∂ζ∂b⊤

0

∂2l0
∂ζ∂ζ⊤





∣

∣

∣

∣

∣

∣

1/2

. (A.3)

The the form of the conditional likelihood implies that

l0(b0, Σ; D) = −T

2
log |2πΣ| − 1

2
(z − Z0b0)

⊤
(

Σ−1 ⊗ IT

)

(z − Z0b0) . (A.4)
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It follows from (A.4) that

∂l0
∂b0

=
1

2
Z⊤

0

(

Σ−1 ⊗ IT

)

(z − Z0b0) ,

and

∂2l0
∂b0∂b⊤0

= −1

2
Z⊤

0

(

Σ−1 ⊗ IT

)

Z0

= −1

2





ι⊤T 0

0 X⊤





(

Σ−1 ⊗ IT

)





ιT 0

0 X





= −1

2





σ(11)T σ(12)ι⊤X

σ(12)X⊤ι σ(22)X⊤X



 . (A.5)

Taking the expectation conditional on b0 and Σ implies

E

[

∂2l0
∂b0∂b⊤0

]

= −T

2











σ(11) σ(12)[1 µx]

σ(12)





1

µx



 σ(22)





1 µx

µx σ2
x + µ2

x















(A.6)

Using arguments in Stambaugh (1999), it can be shown that

E

[

∂2l0
∂b0∂ζ⊤

]

= 0.

Moreover,

−
∣

∣

∣

∣

E

(

∂2l0
∂ζ∂ζ⊤

)
∣

∣

∣

∣

=

∣

∣

∣

∣

∂2 log |Σ|
∂ζ∂ζ⊤

∣

∣

∣

∣

= |Σ|3

(see Box and Tiao (1973, pp. 474-475)). Therefore

p(b0, Σ
−1|H0) ∝ |Φ| 12 |Σ| 32 (A.7)

where

Φ =











Σ−1 µx





σ(12)

σ(22)





µx

[

σ(12) σ(22)
]

(σ2
x + µ2

x)σ(22)











.

This matrix Φ has the same determinant as −E
[

∂2l0
∂b0∂b⊤

0

]

because 2 columns and 2 rows have

been reversed.
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From the formula for the determinant of a partitioned matrix, it follows that

|Φ| =
∣

∣Σ−1
∣

∣

∣

∣

∣

∣

∣

∣

(

σ2
x + µ2

x

)

σ(22) − µ2
x

[

σ(12) σ(22)
]

Σ





σ(12)

σ(22)





∣

∣

∣

∣

∣

∣

.

Because

Σ





σ(12)

σ(22)



 =





0

1



 ,

it follows that

|Φ| =
∣

∣Σ−1
∣

∣

∣

∣

(

σ2
x + µ2

x

)

σ(22) − µ2
xσ

(22)
∣

∣

= |Σ|−1σ2
xσ

(22).

The determinant of Σ equals

|Σ| = σ2
u

(

σ2
v − σ2

uvσ
−2
u

)

,

while σ(22) = (σ2
v − σ2

uvσ
−2
u )

−1
. Therefore,

|Φ| = |Σ|−2σ2
uσ

2
x.

Substituting into (A.7),

p(b0, Σ
−1|H0) ∝ |Σ| 12 σuσx.

The Jacobian of the transformation from Σ−1 to Σ is |Σ|−3. Therefore,

p(b0, Σ|H0) = |Σ|− 5

2 σuσx.

B Sampling from Posterior Distributions

This section describes how to sample from the posterior distributions. In all cases, the

sampling procedure for the posteriors under H1 and H0 involve the Metropolis-Hastings

algorithm. Below we describe the case of the full Bayes exact likelihood in detail. The

procedures for the other cases are similar.
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B.1 Posterior distribution under H0

Substituting (8) and (24) into (25) implies that

p(b0, Σ|H0, D) ∝ σu|Σ|−
T+5

2 exp

{

−1

2
σ−2

x (x0 − µx)
2 − 1

2
(z − Z0b0)

⊤
(

Σ−1 ⊗ IT

)

(z − Z0b0)

}

.

This posterior does not take the form of a standard density function because of the term in

the likelihood involving x0 (note that σ2
x is a nonlinear function of ρ and σv). However, we

can sample from the posterior using the Metropolis-Hastings algorithm.

The Metropolis-Hastings algorithm is implemented “block-at-a-time”, by repeatedly sam-

pling from p(Σ|b0, H0, D) and from p(b0|Σ, H0D) and repeating. To calculate a proposal

density for Σ, note that

(z − Z0b0)
⊤
(

Σ−1 ⊗ IT

)

(z − Z0b0) = tr
[

(Y − XB0)
⊤(Y − XB0)Σ

−1
]

,

where

B0 =





α θ

0 ρ



 .

The proposal density for the conditional probability of Σ is the inverted Wishart with T + 2

degrees of freedom and scale factor of (Y − XB0)
⊤(Y − XB0). The target is therefore

p(Σ|b0, H0, D) ∝ σu exp

{

−1

2
β2
(

σ2
ησ

−2
x σ2

u

)−2 − 1

2
σ−2

x (x0 − µx)
2

}

× proposal.

Let

V0 =
(

Z⊤

0

(

Σ−1 ⊗ IT

)

Z0

)−1

Let

b̂0 = V0Z
⊤

0

(

Σ−1 ⊗ IT

)

z

It follows from completing the square that

(z − Z0b0)
⊤
(

Σ−1 ⊗ IT

)

(z − Z0b0) = (b0 − b̂0)
⊤V −1

0 (b0 − b̂0) + terms independent of b0.
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The proposal density for b0 is therefore multivariate normal with mean b̂0 and variance-

covariance matrix V0. The accept-reject algorithm of Chib and Greenberg (1995, Section 5)

is used to sample from the target density, which is equal to

p(b0|Σ, H0, D) ∝ exp

{

−1

2
(x0 − µx)

2 σ−2
x

}

× proposal.

Note that σu and Σ are in the constant of proportionality. Drawing successively from the

conditional posteriors for Σ and b0 produces a density that converges to the full posterior

conditional on H0.

B.2 Posterior distribution under H1

Substituting (12) and (22) into (26) implies that

p(b1, Σ|H1, D) ∝ σx|Σ|−
T+5

2 exp

{

−1

2
β2
(

σ2
ησ

−2
x σ2

u

)−2 − 1

2
σ−2

x (x0 − µx)
2

}

exp

{

−1

2
(z − Z1b1)

⊤
(

Σ−1 ⊗ IT

)

(z − Z1b1)

}

.

The sampling procedure is similar to that described in Appendix B.1. Details can be found

in Wachter and Warusawitharana (2009). To summarize, we first draw from the posterior

p(Σ | b1, H1, D). The proposal density is an inverted Wishart with T + 2 degrees of freedom

and scale factor (Y − XB1)
⊤(Y − XB1), where

B1 =





α θ

β ρ



 .

We then draw from p(θ, ρ |α, β, Σ, H1, D). The proposal density is multivariate normal

with mean and variance determined by the conditional normal distribution, as described in

Wachter and Warusawitharana. Finally, we draw from p(α, β | θ, ρ, Σ, H1, D). In this case,

the target and the proposal are the same, and are also multivariate normal.
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C Computing the Bayes factor

Verdinelli and Wasserman (1995) provide an implementable formula for the inverse of the

Bayes factor. In our notation, this formula can be written as

B−1
10 = p(β = 0|H1, D)E

[

p(b0, Σ|H0)

p(β = 0, b0, Σ|H1)

∣

∣

∣

∣

β = 0, H1, D

]

. (C.1)

To compute p(β = 0 |H1, D), note that

p(β = 0 |H1, D) =

∫

p(β = 0 | b0, Σ, H1, D)p(b0, Σ |H1, D) db0 dΣ. (C.2)

As discussed in Appendix B.2, the posterior distribution of α and β conditional on the

remaining parameters is normal. We can therefore compute p(β = 0 | b0, Σ, H1, D) (including

integration constants) in closed form, by using the properties of the conditional normal

distribution. Consider N draws from the full posterior: ((b
(1)
1 , Σ(1)), . . . , (b

(N)
1 , Σ(N))), where

we can write (b
(i)
1 , Σ(i)) as (β(i), b

(i)
0 , Σ(i)). We use these draws to integrate out over b0 and

Σ. It follows from (C.2) that

p(β = 0|H1, D) ≈ 1

N

N
∑

i=1

p(β = 0|b(i)
0 , Σ(i), H1, D).

where the approximation is accurate for large N .

To compute the second term in (C.1), we observe that

p(b0, Σ |H0)

p(β = 0, b0, Σ |H1)
=

p(b0, Σ |H0)

p(β = 0|b0, Σ, H1)p(b0, Σ |H1)
=

√
2πσβ,

because p(b0, Σ |H0) = p(b0, Σ |H1). For the empirical Bayes approach, σβ is a constant

and no further simulation is needed. For the full Bayes approach, σβ = σησ
−1
x σu. We re-

quire the expectation taken with respect to the posterior distribution conditional on the

existence of predictability and the realization β = 0. To calculate this expectation, we

draw ((b
(1)
0 , Σ(1)), . . . , (b

(N)
0 , Σ(N))) from p(b0, Σ | β = 0, H1, D). This involves modifying the

procedure for drawing from the posterior for b1, Σ given H1 (see Appendix B.2). We sam-

ple from p(Σ |α, β = 0, θ, ρ, H1, D), then from p(ρ, θ |α, β = 0, Σ, H1, D) and finally from

p(α | β = 0, Σ, θ, ρ, H1, D), and repeat until the desired number of draws are obtained. All
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steps except the last are identical to those described in Appendix B.2 (the value of β is

identically zero rather than the value from the previous draw). For the last step we derive

p(α | β = 0, Σ, θ, ρ, H1, D) from the joint distribution p(α, β |Σ, θ, ρ, H1, D), making use of

the properties of the conditional normal distribution.

Given these draws from the posterior distribution, the second term equals

E

[

p(b0, Σ|H0)

p(β = 0, b0, Σ|H1)

∣

∣

∣

∣

β = 0, H1, D

]

≈ 1

N

N
∑

i=1

√
2πση(σ

(i)
x )−1σ(i)

u , (C.3)

where this approximation is accurate for N large.
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Table 1: Bayes factors and posterior means: Payout yield and annual returns

Model P.01 B10 β̄ ρ̄ r̄ x̄

Full Bayes 0.05 1.68 2.23 0.936 5.24 -3.17

Exact Lkl. 0.50 11.99 12.94 0.889 5.14 -3.16

0.99 18.20 19.54 0.878 5.05 -3.16

Full Bayes 0.05 1.36 1.39 0.959 5.64 -5.32

Conditional Lkl. 0.50 5.51 10.71 0.910 4.87 -3.76

0.99 6.54 16.42 0.914 -22.66 -6.24

Empirical Bayes 0.05 2.58 3.99 0.926 5.22 -3.17

Exact Lkl. 0.50 19.43 14.17 0.887 5.13 -3.16

0.99 27.13 21.90 0.851 5.09 -3.16

OLS 20.89 0.863 5.85 -3.15

Notes: P.01 denotes the prior probability that the R2 from the predictive regression ex-
ceeds .01 conditional on the existence of predictability (this is applicable for full Bayes
priors; empirical Bayes priors are constructed to be comparable to full Bayes counterparts).
B10 = p(D|H1)/p(D/H0) denotes the Bayes factor in favor of predictability (H1) versus no
predictability (H0). The table also reports posterior means of the predictive coefficient β, the
autoregressive coefficient ρ, the excess return r and the predictor variable x conditional on
H1. The predictor variable is the payout yield (the dividend-price ratio adjusted for repur-
chases) constructed from the value-weighted CRSP index. Continuously compounded stock
returns on the value weighted CRSP index are in excess of the continuously-compounded
return on the three-month Treasury Bill. Data are annual from 1/1/1927 to 1/1/2004. OLS
denotes results obtained from ordinary least squares regression.
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Table 2: Bayes factors and posterior means: Dividend-price ratio and annual returns

Model P.01 B10 β̄ ρ̄ r̄ x̄

Full Bayes 0.05 1.51 1.48 0.966 4.71 -3.37

Exact Lkl. 0.50 5.73 7.64 0.946 4.37 -3.35

0.99 6.90 11.30 0.948 4.02 -3.35

Full Bayes 0.05 1.21 0.83 0.980 5.31 -10.24

Conditional Lkl. 0.50 2.78 5.56 0.963 3.15 -6.75

0.99 3.53 8.90 0.976 -83.53 -16.17

Empirical Bayes 0.05 2.23 2.65 0.960 4.64 -3.36

Exact Lkl. 0.50 9.17 8.85 0.942 4.31 -3.34

0.99 9.00 13.28 0.925 4.17 -3.33

OLS 11.64 0.944 5.85 -3.27

Notes: P.01 denotes the prior probability that the R2 from the predictive regression ex-
ceeds .01 conditional on the existence of predictability (this is applicable for full Bayes
priors; empirical Bayes priors are constructed to be comparable to full Bayes counterparts).
B10 = p(D|H1)/p(D/H0) denotes the Bayes factor in favor of predictability (H1) versus no
predictability (H0). The table also reports posterior means of the predictive coefficient β, the
autoregressive coefficient ρ, the excess return r and the predictor variable x conditional on
H1. The predictor variable is the dividend-price ratio constructed from the value-weighted
CRSP index. Continuously compounded stock returns on the value weighted CRSP index
are in excess of the continuously-compounded return on the three-month Treasury Bill. Data
are annual from 1/1/1927 to 1/1/2004. OLS denotes results obtained from ordinary least
squares regression.
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Table 3: Bayes factors and posterior means: Dividend-price ratio and quarterly post-war
returns

Model P.01 B10 β̄ ρ̄ r̄ x̄

Full Bayes 0.05 4.68 1.05 0.990 3.20 -3.49

Exact Lkl. 0.50 7.06 1.87 0.984 3.21 -3.50

0.99 6.48 2.01 0.983 3.21 -3.50

Full Bayes 0.05 2.14 0.69 0.994 2.68 -8.13

Conditional Lkl. 0.50 2.90 1.51 0.988 0.53 -6.87

0.99 2.59 1.59 0.988 -4.74 -8.66

Empirical Bayes 0.05 10.57 1.44 0.988 3.20 -3.50

Exact Lkl. 0.50 11.72 2.43 0.979 3.20 -3.50

0.99 9.34 2.77 0.976 3.20 -3.50

OLS 2.74 0.976 5.22 -3.51

Notes: P.01 denotes the prior probability that the R2 from the predictive regression ex-
ceeds .01 conditional on the existence of predictability (this is applicable for full Bayes
priors; empirical Bayes priors are constructed to be comparable to full Bayes counterparts).
B10 = p(D|H1)/p(D/H0) denotes the Bayes factor in favor of predictability (H1) versus
no predictability (H0). The table also reports posterior means of the predictive coefficient
β, the autoregressive coefficient ρ, the excess return r and the predictor variable x condi-
tional on H1. The posterior mean of r is annualized by multiplying by 4. The predictor
variable is the dividend-price ratio constructed from the value-weighted CRSP index. Con-
tinuously compounded stock returns on the value weighted CRSP index are in excess of the
continuously-compounded return on the three-month Treasury Bill. Data are quarterly from
4/1/1952 to 1/1/2005. OLS denotes results obtained from ordinary least squares regression.
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Table 4: Posterior probability of predictable excess stock returns for the full Bayes exact
likelihood.

Predictor P (R2 > 0.01 |H1) Prior prob. of return predictability q

0.01 0.20 0.50 0.80

Payout Yield 0.05 0.02 0.30 0.63 0.87

Annual 0.50 0.11 0.75 0.92 0.98

0.99 0.16 0.82 0.95 0.99

Dividend-Price Ratio 0.05 0.02 0.27 0.60 0.86

Annual 0.50 0.05 0.59 0.85 0.96

0.99 0.07 0.63 0.87 0.97

Dividend-Price Ratio 0.05 0.05 0.54 0.82 0.95

Quarterly 0.50 0.07 0.64 0.88 0.97

0.99 0.06 0.62 0.87 0.96

Notes: The table reports q̄, the probability the investor assigns to predictable excess stock
returns after seeing the data. Rows vary P (R2 > .01|H1), the prior probability that the R2

from the predictability regression exceeds 0.01, conditional on the existence of predictability.
Columns vary q, the prior probability of predictable excess stock returns. The predictor
variables include the payout yield and the dividend-price ratio, both constructed from the
value-weighted CRSP index. Continuously compounded stock returns on the value-weighted
CRSP index are in excess of the continuously-compounded return on the three-month Trea-
sury Bill. The first two panels report results using annual data from 1/1/1927 to 1/1/2004.
The last panel reports results using quarterly data from 4/1/1952 to 1/1/2005.
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Table 5: Average certainty equivalent returns from timing the market.

Predictor P (R2 > 0.01 |H1) Prior prob. of return predictability q

0.20 0.50 0.80 0.99

Payout Yield 0.05 0.01 0.03 0.05 0.07

Annual 0.50 0.57 0.82 0.92 0.95

0.99 1.15 1.50 1.61 1.65

Dividend-Price Ratio 0.05 0.01 0.03 0.06 0.08

Annual 0.50 0.37 0.69 0.84 0.90

0.99 0.97 1.60 1.87 1.98

Dividend-Price Ratio 0.05 0.42 0.86 1.07 1.16

Quarterly 0.50 1.14 1.83 2.11 2.21

0.99 1.19 1.97 2.30 2.42

Notes: The table reports the certainty equivalent return to timing the market. Rows vary
P (R2 > .01|H1), the prior probability that the R2 from the predictability regression exceeds
0.01, conditional on the existence of predictability. Columns vary q, the prior probabil-
ity of predictable excess stock returns. The predictor variables include the payout yield
and the dividend-price ratio, both constructed from the value-weighted CRSP index. The
posterior is constructed using full Bayes priors with the exact likelihood. Continuously com-
pounded stock returns on the value-weighted CRSP index are in excess of the continuously-
compounded return on the three-month Treasury Bill. The first two panels report results
using annual data from 1/1/1927 to 1/1/2004. The last panel reports results using quarterly
data from 4/1/1952 to 1/1/2005. In this panel, returns are annualized by multiplying by 4.
The certainty equivalent returns are constructed by averaging over the CER values for 1000
draws of the predictor variable from its unconditional posterior distribution.
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Figure 1: Prior Distribution of the R2

Panel A: Probability of predictability q = 1.
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Panel B: Probability of predictability q = 0.5.
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Notes: The figures plot the prior probability that the R2 will be greater than some value
k for different values of k. This equals 1 minus the cumulative density function for the
distribution on the R2. Panel A reports the values conditional on predictability (q = 1) and
panel B plots the values for a prior value of q = 0.5. ση parameterizes the prior variance of
β with σβ = σησ

−1
x σu.
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Figure 2: Posterior Distribution of the R2: Payout Yield and Annual Returns

Panel A Panel B
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Notes: Panel A plots the probability that the R2 from a predictive regression of excess stock
returns on the payout yield will be greater than some value k for different values of k. This
equals 1 minus the cumulative density function for the distribution on the R2. Panel B plots
the probability density function of the R2 for the same regression. The dashed line signifies
the prior and the solid line signifies the posterior distribution for the R2. The likelihood
function for these plots is the full Bayes exact likelihood with P (R2 > 0.01|H1) = 0.50 and
q = 0.5. Data are annual from 1/1/1927 to 1/1/2004.
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Figure 3: Posterior Distribution of the R2: Dividend-Price Ratio and Annual Returns

Panel A Panel B
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Notes: Panel A plots the probability that the R2 from a predictive regression of excess
stock returns on the dividend-price ratio will be greater than some value k for different
values of k. This equals 1 minus the cumulative density function for the distribution on
the R2. Panel B plots the probability density function of the R2 for the same regression.
The dashed line signifies the prior and the solid line signifies the posterior distribution
for the R2. The likelihood function for these plots is the full Bayes exact likelihood with
P (R2 > 0.01|H1) = 0.50 and q = 0.5. Data are annual from 1/1/1927 to 1/1/2004.
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Figure 4: Posterior Distribution of the R2: Dividend-Price Ratio and Quarterly Returns

Panel A Panel B
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Notes: Panel A plots the probability that the R2 from a predictive regression of excess
stock returns on the dividend-price ratio will be greater than some value k for different
values of k. This equals 1 minus the cumulative density function for the distribution on
the R2. Panel B plots the probability density function of the R2 for the same regression.
The dashed line signifies the prior and the solid line signifies the posterior distribution
for the R2. The likelihood function for these plots is the full Bayes exact likelihood with
P (R2 > 0.01|H1) = 0.50 and q = 0.5. Data are quarterly from 4/1/1952 to 1/1/2005.
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